Fourier-Analysis

Die Fourier-Analysis (Aussprache: fuʁie), die auch als Fourier-Analyse oder klassische harmonische Analyse bekannt ist, ist die Theorie der Fourierreihen und Fourier-Integrale. Ihre Ursprünge reichen in das 18. Jahrhundert zurück. Benannt ist sie nach dem französischen Mathematiker Jean Baptiste Joseph Fourier, der im Jahr 1822 in seiner Théorie analytique de la chaleur Fourier-Reihen untersuchte. Die Fourier-Analysis ist in vielen Wissenschafts- und Technikzweigen von außerordentlicher praktischer Bedeutung. Die Anwendungen reichen von der Physik (Akustik, Optik, Gezeiten, Astrophysik) über viele Teilgebiete der Mathematik (Zahlentheorie, Statistik, Kombinatorik und Wahrscheinlichkeitstheorie), die Signalverarbeitung und Kryptographie bis zu Ozeanographie und Wirtschaftswissenschaften. Je nach Anwendungszweig erfährt die Zerlegung vielerlei Interpretationen. In der Akustik ist sie beispielsweise die Frequenz-Transformation des Schalls in Oberschwingungen. Aus Sicht der abstrakten harmonischen Analyse sind sowohl die Fourier-Reihen und die Fourier-Integrale als auch die Laplace-Transformation, die Mellin-Transformation oder auch die Walsh-Transformation Spezialfälle einer allgemeineren (Fourier-)Transformation.

Wörter

Diese Tabelle zeigt das Beispiel für die Verwendung von Wortlisten zum Extrahieren von Stichwörtern aus dem obigen Text.

WortHäufigkeitAnzahl der ArtikelRelevanz
fourier-analysis3190.229
fourier-integrale230.177
fourier-analyse270.166
fourier-reihen290.162
fourier2900.132

This website uses cookies to ensure you get the best experience on our website. Learn more. Got it.