Integralrechnung

Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin Analysis. Sie ist aus dem Problem der Flächen- und Volumenberechnung entstanden. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration. Das bestimmte Integral einer Funktion ordnet dieser eine Zahl zu. Bildet man das bestimmte Integral einer reellen Funktion in einer Variablen, so lässt sich das Ergebnis im zweidimensionalen Koordinatensystem als Flächeninhalt der Fläche, die zwischen dem Graphen der Funktion, der x {\displaystyle x} -Achse sowie den begrenzenden Parallelen zur y {\displaystyle y} -Achse liegt, deuten. Hierbei zählen Flächenstücke unterhalb der x {\displaystyle x} -Achse negativ. Man spricht vom orientierten Flächeninhalt (auch Flächenbilanz). Diese Konvention wird gewählt, damit das bestimmte Integral eine lineare Abbildung ist, was sowohl für theoretische Überlegungen als auch für konkrete Berechnungen eine zentrale Eigenschaft des Integralbegriffs darstellt. Auch wird so sichergestellt, dass der sogenannte Hauptsatz der Differential- und Integralrechnung gilt. Das unbestimmte Integral einer Funktion ordnet dieser eine Menge von Funktionen zu, deren Elemente Stammfunktionen genannt werden. Diese zeichnen sich dadurch aus, dass ihre ersten Ableitungen mit der Funktion, die integriert wurde, übereinstimmen. Der Hauptsatz der Differential- und Integralrechnung gibt Auskunft darüber, wie bestimmte Integrale aus Stammfunktionen berechnet werden können. Im Gegensatz zur Differentiation existiert für die Integration auch elementarer Funktionen kein einfacher und kein alle Fälle abdeckender Algorithmus. Integration erfordert trainiertes Raten, das Benutzen spezieller Umformungen (Integration durch Substitution, partielle Integration), Nachschlagen in einer Integraltafel oder das Verwenden spezieller Computer-Software. Oft erfolgt die Integration nur näherungsweise mittels sogenannter numerischer Quadratur. In der Technik benutzt man zur näherungsweisen Flächenbestimmung sogenannte Planimeter, bei denen die Summierung der Flächenelemente kontinuierlich erfolgt. Der Zahlenwert der so bestimmten Fläche kann an einem Zählwerk abgelesen werden, das zur Erhöhung der Ablesegenauigkeit mit einem Nonius versehen ist. Chemiker pflegten früher Integrale beliebiger Flächen mit Hilfe einer Analysenwaage oder Mikrowaage zu bestimmen: Die Fläche wurde sorgfältig ausgeschnitten und gewogen, ebenso ein genau 10 cm × 10 cm großes Stück des gleichen Papiers; eine Dreisatzrechnung führte zum Ergebnis.

Wörter

Diese Tabelle zeigt das Beispiel für die Verwendung von Wortlisten zum Extrahieren von Stichwörtern aus dem obigen Text.

WortHäufigkeitAnzahl der ArtikelRelevanz
integral71860.182
integration719310.137
integralrechnung4500.119
flächeninhalt3910.084
bestimmte568970.08

This website uses cookies to ensure you get the best experience on our website. Learn more. Got it.